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The behaviour of passive-scalar fields resulting from mean scalar gradients in each 
of three orthogonal directions in homogeneous turbulent shear flow has been studied 
using direct numerical simulations of the unsteady incompressible Navier-Stokes 
equations with 128 x 128 x 128 grid points. It is found that, for all orientations of 
the mean scalar gradient, the sum of the pressure-scalar gradient and velocity 
gradient-scalar gradient terms in the turbulent scalar flux balance equation are 
approximately aligned with the scalar flux vector itself. In addition, the time 
derivative of the scalar flux is also approximately aligned with the flux vector for the 
developed fields (corresponding to roughly constant correlation coefficients). These 
alignments lead directly to a gradient transport model with a tensor turbulent 
diffusivity. The simulation results are used to fit a dimensionless model coefficient as 
a function of the turbulence Reynolds and PBclet numbers. The model is tested 
against two different passive-scalar fields in fully developed turbulent channel flow 
(also generated by direct numerical simulation) and is found to predict the scalar flux 
quite well throughout the entire channel. 

1. Introduction 
Turbulent mixing is of great importance in engineering applications. In  reacting 

flows, turbulent mixing often controls the rate of reaction. Predicting the behaviour 
of contaminants requires a knowledge of turbulent mixing characteristics. The 
dispersion of contaminants or internal energy (with small temperature variations) 
are examples of transport of a passive scalar that is convected by and diffuses through 
the hydrodynamic field without modifying i t  in any way. 

Solution of the Reynolds-averaged mean passive-scalar equation requires 
modelling the turbulent passive-scalar flux. Gradient transport models have been 
used to model turbulent fluxes of momentum and passive scalars since Boussinesq 
(1877). By analogy with molecular transport, these models relate the turbulent flux 
linearly to the mean gradient of the transported property. The constant of 
proportionality is then termed an ‘eddy’ or ‘turbulent’ diffusivity. Such a simple 
algebraic representation of the turbulent transport permits closure of the Reynolds- 
averaged mean scalar-field equation. 

Richardson (1920) noted that the turbulent diffusivity in turbulent shear flow has 
a different value for different orientations of the mean scalar gradient. To describe 
this behaviour it is necessary to describe the turbulent diffusivity by a second rank 
tensor. In general there is no reason to expect the scalar flux and the mean scalar 
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gradient to  be aligned (indeed experimental and numerical work on shear flow show 
this not to be the case) and, because of this, the diffusivity tensor does not have to 
be diagonal. 

Corrsin (1974) has voiced reservations about the self-consistency of gradient 
transport models with spatially varying turbulent diffusivities. It is clear, however, 
that for gradient transport models to work in inhomogeneous flows one must permit 
a spatial dependence of the turbulent diffusivity. This can be easily seen in fully 
developed channel flow with scalar transfer in one wall and out the other. In  this flow 
a constant turbulent diffusivity would be consistent only with a linear mean scalar 
profile. Although this is a good approximation throughout the centre of the channel 
it is not the case in the near-wall region. 

The objective of this work is to develop an algebraic gradient transport model for 
the turbulent flux of a passive scalar in turbulent shear flows from a database 
generated by direct numerical simulation of the Navier-Stokes equations. To model 
the full diffusivity tensor, passive-scalar fields resulting from mean scalar gradients 
aligned with each of the coordinate directions are considered separately. In order to 
permit predictions in inhomogeneous flows, the turbulent diffusivity tensor can 
exhibit a spatial dependence. 

I n  $2, the governing equations and the numerical simulations used in this work are 
discussed. In  addition, a brief description of the behaviour of passive-scalar fields in 
homogeneous turbulent shear flow is given. Section 3 describes the development of 
a model for the turbulent passive-scalar flux using the results of the homogeneous 
turbulent shear flow simulations, and $ 4  discusses the model’s performance in an 
inhomogeneous turbulent flow (fully developed turbulent channel). A summary of 
results and conclusions is given in $5. 

2. The simulations 
2.1. The governing equations 

The equations governing the flow and a passive scalar in an incompressible 
Newtonian fluid are 

q i  = 0, (2.1) 

a ui 1 -+uju,,,+-qi = vui,jj, 
at P 

i3T 
-+U,T,= yTi*+.E, 
at 

where U, represents the ith component of the velocity vector, P denotes pressure and 
T is the passive scalar. Z represents a passive-scalar source term which is assumed 
to be steady and uniform or linear in each coordinate direction for the cases 
considered here. The density (p ) ,  the kinematic viscosity (v) and the molecular 
kinematic diffusivity of the passive scalar ( y )  are uniform throughout the flow field 
and constant in time. In  the above equations, the Einstein summation convention is 
used and a comma followed by an index indicates differentiation with respect to the 
indexed spatial coordinate. 

In the study of turbulence i t  is customary to divide the flow into mean and 
fluctuating fields. Substituting the decomposition 

ui = q + u i ,  P =P+p,  T =  T+e  (2.4) 
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into (2.1)-(2.3) and averaging yields the following equations governing the mean 
fields : - 

utv i = 0, (2.5) 
- au, -- at + u, ui,j + (Tq),, + A P 6 = v q  ,j, 

P 
- 

aT - -  -+ujTj+(eu,),j at = y T , + z .  

It is readily apparent that closure of these equations requires the use of turbulence 
models for the Reynolds stress, uiuj, and for the turbulent scalar flux, 6. In this 
work i t  is assumed that closure models for the hydrodynamic field are available. The 
turbulent scalar flux is to be modelled in terms of given one-point properties of the 
hydrodynamic field, the local mean scalar gradient and the Prandtl number, v ly .  
Note that for homogeneous fldws the Reynolds stress and the turbulent scalar flux 
exhibit no spatial gradients and the mean flow equations (2.5)-(2.7) are decoupled 
from the turbulence. 

The trace of the Reynolds stress tensor, q2 = m, represents twice the turbulent 
kinetic energy per unit mass. The rate of dissipation of turbulent kinetic energy in 
homogeneous flows is given by E = v u i , .  The turbulence scales q2 and E can be 
used to  generate turbulence length- and timescales and both are used in the model 
for the turbulent scalar flux derived in $3. 

The governing equation for the turbulent scalar flux is 

aeu, - -- 1- -- - -ui uj T j -  euj u, ,~ +-pe, , - ( v+y)  U i , ,  e, 
at P 

- eui uj + eu, u, + - veui,i - yui e,, . 
(-- - P l-  

- --L 
The first two terms on the right of the above equation are production terms, one due 
to the interaction of Reynolds stresses and the mean scalar gradient and the other 
due to the scalar flux interacting with the mean velocity gradient. The pres- 
sure-scalar gradient covariance requires modelling and is found to reduce the scalar 
flux. The fourth term on the right of (2.8) is a dissipation term that is believed to be 
negligible at high Reynolds numbers (Launder 1978). The last term is zero in 
homogeneous flows. 

2.2. Homogeneous turbulent shear $ow 
Shear flow turbulence can be homogeneous only if the mean shear rate is uniform in 
space. Here the mean flow direction is chosen to be the x,-direction. The mean 
gradient or cross-stream direction is taken to be the x,-direction and the spanwise 
direction is referred to as the x,-direction. The mean velocities are thus 

- - 
U,(X2) = fix2, u2 = 0, q = 0, 

where S denotes the constant and uniform mean shear rate aVJax,. The fluctuating 
velocities are taken to be ul, u2 and u3 in the xl-, x2- and x,-directions, respectively. 

In  order to include all possible orientations of the mean passive-scalar gradient 
with respect to the mean shear, it is necessary to simulate cases with mean scalar 
gradients in three independent directions. Then, because the governing equation 
(2.3) for the passive scalar T is linear in T, the solution for any mean scalar gradient 
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(for a given hydrodynamic field) can be obtained by using superposition. These three 
independent directions are chosen to be the coordinate directions. Case 1 refers to a 
mean scalar gradient imposed in the streamwise or x,-direction. Case 2 refers to the 
mean scalar gradient imposed in the cross-stream or x,-direction and Case 3 consists 
of a mean scalar gradient imposed in the spanwise or 2,-direction. The scalar 
fluctuations for these three cases will be referred to  as 8,, 8, and 03, respectively. 

For homogeneous turbulent shear flow in the above coordinate system, the mean 
field equations (2.5)-(2.7) become - 

U,,I = 0, 

a q  1 -  -+-PI = 0, P, = 0, q3 = 0, 
at P 

a T  -+ (SX,) , = c. 
at 

(2.10) 

(2.11) 

(2.12) 

As noted before, in homogeneous flows the mean velocity and scalar fields are 
unaffected by the turbulence. To maintain a steady mean velocity field, it is 
neccssary to have a uniform mean pressure field. The mean scalar field is steady if 
C = 0 unless the mean scalar gradient has a component in the streamwise direction. 
In this case, for the mean scalar field to be steady Z = (Ex2) T,. The mean shear 
creates a mean scalar gradient component in the 2,-direction from an imposed mean 
scalar gradient component in the 2,-direction because the mean shear moves fluid a t  
large xz faster than fluid a t  small xz. The above source term will permit a steady mean 
scalar gradient with only an 2,-dependence by generating the scalar quantity a t  a 
rate that exactly cancels the tendency of the mean shear to produce a mean scalar 
gradient component in the x,-direction. Because this source term is steady, it does 
not appear in the fluctuating scalar equations. 

The numerical method used to solve the governing equations for the homogeneous 
shear flow is that of Rogallo (1977, 1981) and has been described in detail in his work 
and by Lee & Reynolds (1985). Fourier-pseudospectral methods (see Orszag & 
Patterson 1972) are used to represent the spatial variation of flow variables and their 
spatial derivatives. Periodic boundary conditions are implemented in all three 
coordinate directions by employing a transformation in which the computational 
grid deforms in accordance with the mean flow. To allow the simulation to progress 
for a substantial time, it is necessary to remesh the grid a t  regular intervals. The 
fields a t  even integral values of St are on an orthogonal mesh and are saved for 
analysis. In order to avoid costly convolution sums in Fourier space, nonlinear 
velocity products are computed in physical space. Aliasing errors that occur when 
velocity products are computed in this fashion are removed by a combination of 
truncation and random phase shift methods. The time advancement is accomplished 
by a second-order Runge-Kutta method. Initial conditions for all the simulations 
consist of randomly generated isotropic fields with prescribed initial energy and 
scalar spectra. 

The ability of the computational grid to resolve the relevant turbulent scales of 
motion must be checked as the simulation progresses. Problems can develop a t  both 
large and small scales. Since large-eddy lengthscales in homogeneous shear flow grow 
in time, it is important that an adequate sample of large eddies exists in the 
computational box at all times. When this condition is no longer satisfied (as 
indicated by an inability to capture all the turbulent kinetic energy at low 
wavenumbers or by a two-point correlation function that does not decrease to zero 
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C128R (2128s C128U C128V C128W C128X 
simulation simulation simulation simulation simulation simulation 

Nz 128 
128 
128 

Nv 
Nz 
Ax 0.07792 
AY 0.03896 
Az 0.03896 
S 28.284 
Y 0.010 
d 31.96 
so 2.5 
Pr 1.0 
e20 31.96 
- 

128 
128 
128 

0.07792 
0.03896 
0.03896 
28.284 
0.010 
31.96 
2.5 
0.2 

31.96 

128 
128 
128 

0.07792 
0.03896 
0.03896 
28.284 
0.010 
31.96 

2.5 
0.7 

31.96 

128 
128 
128 

0.07792 
0.03896 
0.03896 
28.284 
0.020 
31.96 
2.5 
2.0 

31.96 

128 
128 
128 

0.07792 
0.03896 
0.03896 
56.568 
0.020 
31.96 
2.5 
2.0 

31.96 

128 
128 
128 

0.07792 
0.03896 
0.03896 
14.142 
0.005 
31.96 
2.5 
0.7 

3 1.96 

TABLE 1.  Simulation parameters. Pulse initial energy and scalar spectra with $Eii(k) = 1 and 
$EE,(k) = 1 between k = 16 and k = 32 

within the computational box), the numerical simulations no longer represent 
physical turbulence. It is also necessary to ensure that the small scales contributing 
to the dissipation of turbulent kinetic energy are well-resolved by the computational 
grid. This will automatically ensure that the small-scale contribution to the 
turbulent kinetic energy is adequately captured. The smallest eddies in the flow (as 
indicated by the Kolmogorov scale) become smaller because the rate of dissipation 
of turbulent kinetic energy increases for large time, St. Thus the grid spacing will 
eventually become inadequate to capture the small scales of motion. For a limited 
number of grid points i t  is possible to resolve only a limited range of scales, and this 
limits the numerical simulations to low Reynolds numbers. Ideally, the computation 
runs out of computational grid a t  both the large- and small-scales a t  the same time, 
allowing the widest range of scales (and therefore largest Reynolds number) on a 
given grid. The two-point scalar correlations, the scalar spectra and the scalar 
dissipation spectra were also monitored to ensure that all essential scales of passive- 
scalar motion were captured by the computational grid. 

All simulations were done on the GRAY X-MP a t  the NASA-Ames Research 
Center. The 128 x 128 x 128 grid simulations used here took about 20 s per time-step 
to generate the hydrodynamic field and an additional 25 s per time-step to simulate 
the three passive-scalar fields resulting from mean scalar gradients in each of the 
coordinate directions. The different simulations ran between 900 and 1400 time-steps 
before the computational mesh became inadequate to  resolve the turbulence. 

The parameters for the simulations are given in table 1.  The C128R, C128S and 
C128U simulations all used the (recalculated) hydrodynamic field from the high- 
Reynolds number simulation of Rogers & Moin (1987) with Prandtl numbers Pr = 
1.0, 0.2 and 0.7, respectively. Prandtl numbers greater than 1.0 could not be 
simulated with this hydrodynamic field because the relatively weak scalar diffusivity 
for such cases allows very small scalar motions (compared to the smallest scales of 
motion of the velocity field) to exist without adequate computational grid for them 
to be resolved.? For this reason, in order to  simulate large-Prandtl-number scalar 
flows, the Reynolds number must be reduced to provide extra resolution a t  the high- 
wavenumber end of the spectrum. Maintaining a high enough Reynolds number for 

t Because of the pressure term in (2.2) the small-scale hydrodynamic field is better resolved than 
the small-scale scalar field at Pr = 1.0. 
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a realistic turbulent flow that compares well to experiment puts a severe limitation 
on the Prandtl number and it was not possible to generate satisfactory fields for 
Pr > 2. The C128V and C128W simulations resolve a Pr = 2.0 passive scalar by 
reducing the Reynolds number. The C128X simulation provides another Pr = 0.7 
case that can be compared to the experimental work. 

The initial scalar spectrum for these simulations was a rectangular pulse over the 
same range of wavenumbers as the initial energy spectrum. Other initial scalar 
spectra were not used, but Shirani, Ferziger & Reynolds (1981) have shown that in 
homogeneous turbulent shear flow the scalar field rapidly adjusts itself to the 
velocity field and the scalar spectrum becomes independent of its initial form. 

A comparison of statistics of the hydrodynamic field to those observed 
experimentally by Tavoularis & Corrsin (1981) is made in Rogers & Moin (1987) and 
a more thorough analysis, including a comparison of the passive-scalar results with 
data from both Tavoularis & Corrsin (1981) and Tavoularis & Corrsin (1985), is 
presented in Rogers, Moin & Reynolds (1986). In  general the agreement is quite good 
despite the substantial difference in Reynolds number between the simulations and 
the experiments. A brief description of the passive-scalar field development is 
described in the remainder of this section. 

The solution of the passive-scalar equations involves specifying a mean scalar 
gradient and a molecular scalar diffusivity, y. The mean scalar gradient in all the 
simulations has the same magnitude, denoted by S,, in each of the three coordinate 
directions. The time development of the r.m.s. values of the scalar fluctuations, 0 = 
(p$, exhibits growth similar to that observed in the experimental work. In 
agreement with Tavoularis & Corrsin (1985), 0; is slightly larger than 0;. No 
experimental data are available for Case 1, but all simulations show 0; to be much 
larger than 0; or 0;. The dissipation of scalar fluctuation intensity, 82, is given by 
2x = 2yO,, O,i. There is much uncertainty about the value of x in the experiments but 
the qualitative behaviour and approximate magnitude of statistics involving x are 
in good agreement with the simulated results. 

The quantities S,, 0, x and y are analogous to the quantities 8, q, E and v 
characterizing the behaviour of the velocity field. From these scales a lengthscale, 
B’/S,, and a timescale, (8’ )2 /x ,  can be formed. The ratios of the analogous scales of 
the velocity field to these two scales yield two dimensionless parameters: 

(2.13) 

B represents the relative strength of the fluctuating velocity field compared to the 
fluctuating scalar field and R represents the ratio of the hydrodynamic turbulence 
timescale to the scalar turbulence timescale. These two parameters rapidly reach a 
roughly constant value in the simulations (see figure I ) ,  the value of which depends 
on the Prandtl number and the orientation of the mean scalar gradient but appears 
to be relatively insensitive to  other parameters. Thus both length- and timescales of 
the passive-scalar field quickly adjust themselves in accordance with those of the 
velocity field. 

In  agreement with the experimental results of Tavoularis & Corrsin (1981) the 
scalar fluctuations are distributed according to a Gaussian distribution and the joint 
velocity-scalar distributions are very close to  joint normal. The skewness of the 
velocity and scalar gradient fluctuations is also in good agreement with experiment. 
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FIGURE 1. Time development of the dimensionless parameters (a)  B and ( b )  R for the C128U 

simulation. 0, 0, A, Cases 1 ,  2, 3, respectively. 

2.3. Fully developed turbulent channel JEow 
The direct numerical simulations of fully developed turbulent channel flow are taken 
from Kim, Moin & Moser (1987) on a 128 x 129 x 128 grid. The Reynolds number 
based on the channel half-width, 6, and the wall-friction velocity, u,, is 180. 
Pseudospectral methods are used to represent the spatial variation of flow variables 
and their spatial derivatives. Periodic boundary conditions are implemented in the 
streamwise, xl-, and the spanwise, x3-, directions permitting the use of Fourier series 
to describe the velocity in these two directions. Chebyshev polynomials are used for 
the mean gradient or 2,-direction to accommodate no-slip boundary conditions. 
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Aliasing errors are removed by expanding the number of collocation points by a 
factor of f before transforming into the physical space. Time advancement is 
accomplished by the Crank-Nicolson method for the viscous terms and the 
Adams-Bashforth method for the nonlinear terms. The simulations were run until 
statistical stationarity was reached and then turbulent statistics were gathered by 
averaging over (xl, x,)-planes and 20 realizations. 

Two different passive-scalar fields were simulated (Kim & Moin 1987). The first 
corresponds to the case where a passive scalar is added at the lower wall and removed 
from the upper wall a t  the same rate (referred to as WT or wall transfer case) and 
the second represents a case where the passive scalar is generated internally by a 
uniform steady source term and removed a t  both walls (referred to as IS or internal 
source case). Both of these passive-scalar fields reach a statistically steady state after 
the hydrodynamic field is fully developed. Each of these cases was run a t  Prandtl 
numbers of 0.10, 0.71 and 2.00. The computed results were in good agreement with 
existing experimental results. 

3. Model development from homogeneous shear flow data 
In a homogeneous flow there can be no spatial gradients of the turbulent scalar 

flux but it can assume uniform non-zero values. A positive correlation between 8 and 
ue results in a positlive flux and vice versa. When the scalar is temperature, this 
corresponds to hot fluid moving in the positive direction or cold fluid moving in the 
negative direction. 

Because the flux is based on the behaviour of a passive scalar that does not affect 
the velocity field, it is reasonable to expect that  it would be possible to model this 
quantity based solely on characteristics of the velocity field, the imposed uniform 
mean scalar gradient and the Prandtl number. Sreenivasan, Tavoularis & Corrsin 
(1981) have shown that gradient-transport-type models work well for predicting the 
scalar flux in homogeneous flows. The simplest and most commonly used gradient 
transport model is 

This model is analogous to the Fourier constitutive equation for heat conduction and 
assumes that the scalar flux is down the mean scalar gradient. The constant of 
proportionality, y,, is referred to as the turbulent eddy diffusivity. 

The simulations and the experimental work both show the model of equation (3.1) 
to be inadequate. The scalar flux in homogeneous turbulent shear flow is not, in 
general, aligned with the mean scalar gradient (see figure 2 ) .  Additionally, the 
magnitude of the flux component down the gradient varies substantially, depending 
on the direction of the imposed mean scalar gradient. Figure 3 illustrates the time 
development of the turbulent Prandtl number based on the magnitude of the flux 
component in the mean scalar gradient direction, Pr, = ( - v / S ) / y , .  For Case 2 
(mean scalar gradient parallel to  the mean shear) Pr, c 0.85 which is in good 
agreement with typical values found in the turbulent boundary layer (see Kays & 
Crawford 1980) and in other inhomogeneous flows. The experimental values in 
homogeneous shear flow are slightly higher than the simulated results. For Case 1 
and Case 3, however, the turbulent Prandtl number is far from one and using this 
assumption for these cases would be grossly in error. The physical relevance of Pr, 
is thus questionable because this parameter depends strongly on the orientation of 
the mean scalar gradient with respect to  the mean shear. 

Because (3.1) cannot represent the behaviour of the scalar flux using a scalar 

- 

(3.1) Bu, = - - Y T T i .  



An algebraic model for the turbulent Jlux of a passive scalar 85 

0 

- 10 

-20 

z 
3 
3 -30 s 
2 
d 

- 40 

- 50 

- 60 

0 

- 10 

- 20 

- 30 

-40 

- 50 

-60 

0 

0 2 4 6 8 10 12 14 16 18 

Dimensionless time. Si 

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 

Dimensionless time, Sr 

FIQURE 2. Time development of at = tan-' (Ou,/@u,), the turbulent scalar flux direction. (a )  0,  0, 
n,Case  1 :  C128R,C128S,C128U;---,-,----,Case2: C128R,C128S,C128U; ( b )  0, 0, 
A, Case 1 :  C128V, C128W, C128X; ---, -, ----, Case 2;  C128V, C128W, C128X. xote 
Case 3 flux is down the mean gradient, end down-the-mean-gradient directions for Cases 1 and 2 
correspond to 0' and -goo, respectively. 

_ -  

turbulent eddy diffusivity, it becomes necessary to implement a tensor eddy 
diffusivity as suggested by Batchelor (1949). This yields 

where Dij is the turbulent eddy diffusivity tensor. Because the flux vector is not 
aligned with the mean scalar gradient, D, is not a diagonal tensor. Since each column 
is derived from a different physical experiment (it is necessary to simulate three 
independent mean scalar gradients to determine all nine components of Dij),  there 
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1.0 1 

V 0 

V 

0 2 4 6 8 10 12 14 16 18 

Dimensionless time, Sf 

FIQURE 3. Time development of the turbulent Prandtl number, Pr,, for the C128S and C128U 
simulations. 0,  0, A, Cases 1, 2, 3, C128S simulation; +, x ,  0 ,  Cases 1, 2, 3, C128U simulation; 
0, [XI, Cases 2, 3, Tavoularis & Corrsin (1981), Tavoularis & Corrsin (1985). 

is no physical reason for Dij to be symmetric and indeed both experimental and 
numerical results show that D, is not symmetric. For the coordinate system (2.9), 
flow symmetry implies 

a result that is confirmed by the computations. Thus the flux resulting from a 
spanwise mean scalar gradient is aligned with it. Fluxes resulting from a mean scalar 
gradient imposed in the (z,,x,)-plane lie in that plane but are not aligned with the 
mean scalar gradient. In  fact, as can be seen in figure 2 ,  the flux direction is inclined 
a t  about 15' below the streamwise coordinate direction for both Cases 1 and 2. The 
turbulence thus dominates simple down-the-gradient transport. 

The existence of hairpin vortices in homogeneous turbulent shear flow (Rogers & 
Moin 1987) can be used to explain the nature of the turbulent scalar flux. The 
inclined coherent hairpin-like vortex structures tend to pump the scalar between 
their legs. If this provided the dominant mechanism for turbulent scalar transport 
then the turbulent scalar flux direction should depend on the coherent vortex 
structure orientation and not on the orientation of the mean scalar gradient across 
the structure. Figure 2 provides evidence that this is to a large extent the case. In 
addition, the scalar fields of Cases 1 and 2 are expected to be well correlated because 
for these two cases the hairpin vortices create the same regions of high scalar 
intensity. In all the numerical simulations the initially uncorrelated scalar 
fluctuations 8, and 0, became over 75% correlated as the scalar fields developed. 
Further indication of the alignment of the scalar flux with characteristic directions 
of the hydrodynamic field is particularly evident for Case 2 .  Figure 4 compares the 
time development of the principal angle of the Reynolds stress tensor, 

ab = tan-l(2-/($-z)), 

D,, = D,, = D,, = D,, = 0,  (3.3) 
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FIGURE 4. Comparison of the turbulent scalar flux direction, ar, for Case 2 with a,. 0, a,, C128R 
simulation; 0, a,, C128S simulation; A, a,, C128U simulation; +, a,, C128V simulation; x , a,. 
C128W simulation ; 0, af, C128X simulation; - - - -, a,, C128R, C128S, C128U simulations; ---, 
a,, C128V simulation; -- -, a,, C128W simulation; -, a,, C128X simulation. 

-125 ! 
0 2 4 6 8 10 12 14 16 18 

Dimensionless time, SI 
~ 

FIGURE 5. Time development of the non-zero turbulent passive-scalar flux components, 6, ui 
(normalized by yS,), for the C128U simulation. 0,  G; 0, G; A, G; +, G; x , G. 
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8 
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0 2 4 6 8 10 12 14 16 18 

Dimensionless time, Si 

FIGURE 6. Time development of the turbulent eddy diffusivity tensor, D,,/D,, for the C128U 
simulation. 0, D 1 1 / D 2 z ;  0, D l z / D z z ;  A, D z l / D z z ;  +, D33/D22;  x , D,,/D,,  (Tavoularis & Corrsin 
1981); TJ, D33/D22 (Tavoularis & Corrsin, 1985). 

with that of the inclination angle of the turbulent scalar flux, 

af = tan-l(&/BU,). 

It is readily apparent that the flux rapidly aligns itself with the principal axes of the 
Reynolds stress tensor for this case, particularly when Pr is greater than 0.2. It 
should be noted that since af for Case 1 is close to that of Case 2 (figure 2) ab also gives 
a rough indication of the flux inclination angle for Case 1.7 

Figure 5 shows the time development of the non-zero turbulent scalar flux 
components for each imposed mean scalar gradient from the C128U simulation. 
Other simulations behave in a similar fashion. Because the magnitude of the scalar 
gradient is the same for each case, the components of Dij behave in the same manner 
as the fluxes. The components of Dij normalized by D,,, the conventional scalar eddy 
diffusivity, for the C128U simulation are shown in figure 6. The other simulation 
results are qualitatively similar. The simulation is in good agreement with the 
experimental results of Tavoularis & Corrsin (1981, 1985) despite significant 
Reynolds-number differences. No experimental data are available for the case of a 
mean streamwise scalar gradient. 

The governing equation for the turbulent scalar flux in homogeneous flows is 

(3.4a) 

(3.4b) 

f This approximate equality of ab and a, was found t o  hold in the fully developed turbulent 
channel flow simulation results as well. For the IS case agreement was good throughout the 
channel, particularly for Pr = 0.71 and Pr = 2.0. The equality does break down in the central 
region of the channel for the W T  case where the flux is directed vertically yet w a n d  ab approach 
zero. In the lower half of the channel, however, the agreement is excellent for Pr = 0.71 and Pr = 
2.0 and within about 10’ for Pr = 0.1. 
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The first two terms on the right-hand side of (3.4~) are production terms that do not 
have to be modelled. The terms in $i must be modelled (although local isotropy of 
small scales implies that the dissipation term is small for large Reynolds numbers). 
The behaviour of these terms has been studied by examining many simulated flow 
fields. Figure 7 shows the balance of the terms in (3 .4a ,b)  for Case 2 of the C128U 
simulation. The behaviour of the individual terms in the scalar flux equations will 
now be examined. 

The term a&/at is generally smaller than the terms on the right-hand side of the 



90 M.  M.  Rogers, N .  N .  Mansour and W. C. Reynolds 

equation but is not zero. However, the correlation coefficient &/(s lq)  does appear 
to reach a constant value when the flow becomes developed, implying that 

Differentiation together with the governing equations for the turbulent kinetic 
energy and the scalar fluctuation intensity then yields 

_ _  
where 9 = - m S  and 9 0  = - Bu, T denote the production rates of h2 and p, 
respectively. This indicates that the change in Bu, is exactly aligned with Bu, itself 
when the correlation coefficient derivative in (3.5) is exactly zero. Direct examination 
of the scalar flux direction (figure 2) shows that it is indeed approximately constant 
for the developed shear fields. 

The 'dissipation' term in (3.4b), - ( ( ~ + y ) u ~ , ~ B , , ,  is typically small for the high- 
Reynolds-number fields a t  large St. The balance for % from Case 1 shows that this 
so-called dissipation term is negative a t  large St and thus acts as a production term 
for this case. The pressure term in (3 .4b)  always causes flux dissipation and is roughly 
aligned opposite to the flux direction. The sum $i is even more closely aligned opposite 
to the flux direction. Lumley (1978) has defined $fj = - ~ i ( q 2 / E ) / &  in studying the 
decay of the scalar flux in a flow returning to  isotropy. Thus, in this notation, the 
simulation results indicate that q5f, z $ 1 ~ 8 ~ ~  in homogeneous turbulent shear Aow. 
This result has been assumed by Zeman & Lumley (1979) and Newman, Launder & 
Lumley (1981) who take q5' = 7.5 and 6.6, respectively. Shih & Lumley (1986) take 
q5fj to be isotropic but model q5e in terms of the timescale ratio, R, instead of assuming 
it to be constant. 

It thus seems reasonable that both $i and the time change of the scalar flux can 
be replaced by a multiple of the scalar flux vector, yielding 

-_ 1- 
0 = - w T j - B ~ , U i , , - C , - B ~ , ,  7 (3.7) 

where C, is a dimensionless coefficient and 7 is an appropriate timescale. (Note that 
C, and the tensor 0, defined below are of opposite sign to those used in Rogers et al. 
1986). Equation (3.7) implies that  the sum of the two scalar flux production terms 
is aligned with the scalar flux vector, an easier assumption to  check in practice than 
the alignment of the modelled terms with the flux vector. The governing equation 
has now been reduced to an algebraic equation for and can be solved. Defining 
a tensor Oij, 

(3.8) oij = ;8**+'UI,*, C D  

- 
leads to o,$ = --Ti. 

Inversion of the 3 x 3 matrix 0, then yields 

(3.9) 

(3.10) 

where 0-' is the reciprocal of the determinant of O,,. Note that the gradient transport 
form of this model has been derived directly from the governing equation for the 
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passive-scalar flux with the assumption that the sum of the modelled terms can be 
represented by a vector aligned with @. The definition of Dij (equation (3.2)) finally 
results in (the superscript M indicates model prediction) 

Dt = P l ~ p ~ i  Elmn O l p  O m k  m, (3.11) 

or, on a component basis, 

7 DE = -2 2, 

C D  

7 DE = -2 3‘ 

C D  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

For S7/CD B 1 the matrix 0, becomes stiff. This does not create any difficulties for 
the model because the inversion is done analytically. From (3.12)-(3.16) it can be 
seen that under this condition the streamwise fluxes will dominate. This is expected 
because the shear production term in the scalar flux balance equation ( 3 . 4 ~ )  
contributes only to  the streamwise flux component. For the simulations considered 
here S7/CD < 2.5 because the turbulence timescale 7 adjusts itself to the value of S 
such that 87 reaches a constant that is typically only slightly larger than C,. Other 
possible realizability restrictions, such as the condition that the scalar-flux 
correlation coefficients remain less than one in absolute value, cannot be investigated 
without a model for the scalar fluctuation intensity, 82. 

This model has only one dimensionless coefficient and generates D,, from a 
multiplication of a tensor containing the mean shear information and the Reynolds 
stress tensor. This formulation resembles the original governing equation in that the 
mean shear appears explicitly only in the Dli elements, consistent with the fact that 
the mean shear directly contributes only to the streamwise flux component in the 
scalar flux governing equation. 

Gibson & Launder (1976) have used (3.5) (and assumed that the spatial gradients 
of the same correlation coefficient are zero for inhomogeneous flows) to develop an 
algebraic stress model for the passive-scalar flux vector. However they model +t 

as 

(3.17) 

This form results from (3.4b) by neglecting the dissipation term and modelling the 
‘slow’ and ‘rapid’ parts of the pressure term by the first and second terms on the 
right-hand side of (3.17), respectively. When cZT + 0 (Gibson & Launder 1976 use 
0.50), this implies that $i is not aligned with Bu, and leads to different expressions 
for D t .  The simulation results indicate that splitting the pressure term into rapid and 
slow parts is not a good idea. The ‘slow’ pressure term and the sum of the ‘slow’ 
pressure term and the dissipation term are not as closely aligned with the scalar flux 

4 FLM 203 
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as either the total pressure term or the sum of the total pressure and dissipation 
terms. 

Tavoularis & Corrsin (1985) used ‘mostly material coordinates’ to arrive a t  
expressions that appear somewhat similar to (3.12)-(3.16). If all their timescales qj 
are taken as equal, with a value of r/C, (although their estimates vary by a factor 
of four), their expression (21) would be the same as the above estimates for the 
diagonal entries of Dii except for the fact that the sign of the second term for D,, is 
opposite to that of (3.12). Thus their value of D,, is a difference of two terms 
(implying D,, could be negative) as opposed to the estimate given here which is the 
sum of two positive terms. Their estimates of the off-diagonal terms are interchanged 
compared to (3.13) and (3.14) with the mean shear affecting the D,, rather than the 
D,, component. This is contrary to what is expected from the governing equation 
( 3 . 4 ~ ) .  In  addition, the sign of the mean shear term is opposite that of the second term 
in (3.13) implying D,, could be positive. Both D,, and D,, must be negative (or, more 
exactly, opposite in sign to S )  according to (3.13) and (3.14). 

There are five non-zero components of Dij  and only one free coefficient C,. The 
averaging method employed to determine C, consists of averaging the five C, 
estimates obtained from (3.7). This is not the same as the average of the five C, 
estimates determined by (3.12)-(3.16) but is close for the simulation data considered 
here (the two estimates would be exactly the same if there were no scatter in the 
five C, estimates). 

The choice T = q 2 / E  generates values of C, that grow monotonically in time and 
are easiest to model as described below. This choice is consistent with Lumley (1978) 
and the more recent work in scalar-field modelling cited above. However, the 
coefficient C, is not the same as the $* used by turbulence modellers because the time 
change of the scalar flux is included in C, and not in $e. 

The behaviour of C, for all six scalar simulations in homogeneous shear flow is 
shown in figure 8 (simulation results are indicated by the symbols). Launder (1978) 
presents data from a variety of experimenters based on (3.15) that yield C, ranging 
from 5 to 19.4. This coefficient can be modelled in terms of the available dimensionless 
scalar parameters, including Re, = q 4 / ( w ) ,  Sq2/s ,  Pr and St, and the Reynolds stress 
tensor invariants. The invariants were eliminated for simplicity and St was not 
considered because the turbulence growth with St is affected by the initial conditions. 
Shih & Lumley (1986) model $e in terms of the timescale ratio, R = (qz//e)/(e2/x). 
This necessitates solving additional equations for Bz and x, and is done to incorporate 
the effects of different initial scalar conditions in the return- to-isotropy problem. 
In the homogeneous turbulent shear flow simulations R rapidly approaches a 
constant value whereas C, continually increases and it is therefore clear that C, 
must be primarily dependent on some other parameter. In  addition, not basing C, 
on R avoids violating the linearity and independence principles set forth by Pope 
(1983). 

Because the C128R, (3128s and C128U simulations have the same velocity field, 
the Prandtl (or PBclet, Pe = Re,Pr) number effect on the model coefficient can be 
isolated. It was found by trial and error that a function of the form 

(3.18) 

could describe this behaviour. This function approaches a,, for large Pe;  and, 
depending on the sign of a3, approaches infinity or zero when Pe tends to zero. 
The fact that large-scale turbulence statistics reach a value independent of P e  for 
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FIGURE 8. Time development of the model coefficient C, and comparison to fitting function 
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FIQURE 9. Dependence of the model coefficient C, on the PBclet number with comparison to fitting- 
function predictions. 0, C128R simulation; 0, C128S simulation; A, C128U simulation; +, 
C128V simulation; X ,  C128W simulation; 0, C128X simulation; ---- , Pr = 1 .O prediction ; 
-.- , Pr = 0.2 prediction ; - - - , Pr = 0.7 prediction; -, Pr = 2.0 prediction. 
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large Pe is born out by the simulations and might be expected from the non- 
dimcnsionalized governing equation for the passive scalar. 

The coefficient a, is primarily a function of the local turbulent Reynolds number, 
Re,. Figure 9 gives evidence of this because data from different simulations a t  the 
same Prandtl number lie nearly on a single curve when plotted against Pe (or Re, 
since Pr is the same). Because the simulations lead one to believe that many 
turbulence statistics tend towards a high-Reynolds-number asymptote, a fitting 
function similar to (3.18) was used for the Reynolds-number dependence, 

(3.19) 

The extra degree of freedom a, is required to match the correct asymptotic behaviour 
for both low and high values of Re,. 

The fitting function 

(3.20) 

gives a reasonable fit to the data and is shown in figures 8 and 9. A poor fit for low St 
may be expected because these data do not represent developed shear fields and are 
still affected by the artificial initial conditions. The C128V series data show the 
poorest agreement, perhaps because the large scales were not adequately captured. 
The discrepancy between the fit and the data is much less than the scatter among the 
five individual C, estimates, implying that more accurate flux predictions would 
require an alternative model formulation and not simply an improved fitting 
function (except perhaps for the low Re,, Pr = 2.0 cases as discussed below). 

Figure 10 illustrates the ratio of the five non-zero flux components predicted by the 
model to the corresponding simulated values. 75% of the data points lie within 
f 20 % of perfect agreement. The majority of the points with larger disagreement 
come from the Pr = 2.0 simulations, particularly for low Re, where the fitting 
function does a poor job (see figure 9). In  general the flux 8,u, tends to be 
overpredicted and the flux 8,u, tends to be underpredicted. The model also does a 
fair job of predicting the experimentally observed fluxes of Tavoularis & Corrsin 
(1981, 1985). The value of C, given by (3.20) is somewhat below the average of the 
three experimentally available C, estimates. The experimental values of 8, u1 are 
predicted to within 9 Yo and the fluxes 82 u, and 0, us are overpredicted by an amount 
between 20 % and 35 YO. t 

In isotropic turbulence with no mean velocity gradients the model reduces to 

- 
- 

__ 

- ~ 

(3.21) 

The experimental data of Sirivat & Warhaft (1983) for isotropic turbulence with a 
linear mean scalar gradient yield different values of D,, for the same velocity field, 
depending on the initial conditions of the scalar field. Algebraic models based solely 
on the velocity field statistics cannot reproduce this behaviour and it is necessary to  

t The model developed here corresponds to  ‘model 2’  of Rogers et al. (1986). The ‘model 1 ’ of 
that  work predicted the scalar flux with about the same accuracy in homogeneous shear flow but 
failed in the wall region of the turbulent channel flow. ‘Model 1 ’ was based on the result, found 
from the homogeneous shear flow simulations, tha t  in the coordinate system aligned with the 
principal axes of the Reynolds stress tensor, the D<, tensor assumed a special form with D,, = 

--D21. 
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FIGURE 10. Ratio of flux predicted by model to flux calculated from the simulations. Data for all 
five non-zero flux components. 1, C128R simulation; 0, C128S simulation; A, C128U simulation; 
+, C128V simulation; x , C128W simulation; 0 ,  C128X simulation; horizontal lines indicate 
f 20 % discrepancy. 

employ ordinary differential equations to predict how the initial conditions affect the 
scalar flux. Shih & Lumley (1986) have done this and accurately predict, the scalar 
flux in the Sirivat & Warhaft (1983) experiments although this method requires 
specifying an initial condition (in that work taken a t  x /M = 40 or in one case 
x / M  = 80). The model developed here somewhat underpredicts the average of the D,, 
values reported by Sirivat & Warhaft (1983) but does capture the general decrease 
of D,, with x /M as shown in figure 11.  Rescaling the curves in figure 11 with the 
initial-condition information used by Shih & Lumley (1986) would yield agreement 
comparable with theirs. 

4. Model performance in fully developed channel flow 
It is often argued that gradient-transport-type models should fail in inhomo- 

geneous flows (e.g. Sreenivasan et al. 1981) where the characteristic length of the 
transporting mechanism is not small compared with the distance over which the 
mean gradient of the transported property changes appreciably. The universality of 
the model developed in 9 3 may therefore be questioned. In  order to clarify this issue 
the model was tested against data from the direct numerical simulations of fully 
developed turbulent channel flow described in $2.3. 

A comparison of the model predictions for the turbulent scalar flux with the 
corresponding numerically simulated values for the wall transfer (WT) and internal 
source (IS) cases is shown in figures 12 and 13, respectively. The ability of the model 
to predict the qualitative nature of the turbulent scalar flux from the wall to the 
channel centreline for all Prandtl numbers is remarkably good. The fitting function 
(3.20) could be scaled up slightly to better predict the magnitude of 8u, but this 
would typically degrade the accuracy of the & component. Because & is the flux 
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FIQURE 11. Comparison of model predictions with experimental data of Sirivat & Warhaft (1983) 
in decaying isotropic turbulence. ( a )  ZJ, = 3.4 m/s; ( b )  U ,  = 0.3 m/s. Symbols, experimental data; 
line, model prediction. 

component required for closure of the mean scalar equation in the cases considered 
here, such a modification was not adopted. 

The ability of the model to predict the scalar flux from y/6 x 0.2 to 0.7 is not 
entirely unexpected. I n  this region the channel flow appears to be approximately 
homogeneous, with little spatial variation of the governing dimensionless parameters 
(Re,, Sq2/e, w,,,/S, . . .) and the Reynolds stress anisotropies. This can also be seen 
from the balance of the terms in the governing equation for the scalar flux. In  the 
region 0.2 < y/6 6 0.7 the terms due to  the inhomogeneity are typically small and 
the balance qualitatively resembles that of the homogeneous shear flow. 

For the passive-scalar fields considered here, (2.8) reduces to  

The time derivative of the scalar flux is zero because the channel flow has reached 
statistical stationarity and therefore the assumption of (3.6) is no longer needed. The 
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remaining assumption of the model, that ~i is aligned with the scalar flux, holds 
quite well throughout the entire channel. What is surprising is that the sum of the 
inhomogeneous terms is also roughly aligned with the scalar flux in regions where this 
sum is not small (this behaviour is assumed in the algebraic stress model of Gibson & 
Launder 1976). In  fact the sum of all the modelled terms (including those due to 
inhomogeneities) is typically more aligned with the scalar flux vector than is +i .  This 
alignment maintains itself throughout the channel, including the near-wall region. 

The failure of gradient transport models for inhomogeneous flows as discussed by 
Sreenivasan et al. (1981) needs further investigation in the light of the present results. 
For the inhomogeneous flow they studied, the model developed here predicts 

where C, is given by (3.20). The fact that their experiment did not exhibit a linear 
relationship between -Bu, and T 2  may thus be expected for two reasons. First 
T I  may not be negligible compared with T 2 ,  particularly near the peak of the 
temperature profile where T is zero. Unfortunately, streamwise derivatives are 
not available from the experiment to check this. Second, variation of C, in 
inhomogeneous flows prevents a linear relationship between the scalar flux and the 
mean gradient even when T I  = 0. 

Sreenivasan et al. (1981) find a positive value of -?%< a t  the peak of the 
temperature profile where T 2  = 0. I n  this region the mean shear and -- are 
positive and T is negative due to the spreading of the temperature wake. Equation 
(4.2) thus predicts the observed sign for the scalar (temperature) flux. Again, lack of 
streamwise derivative information prevents quantitative comparison. 

The experimental data also show a limited region of ‘counter-gradient diffusion ’, 
or a region where 6 and aT’/ax, have the same sign. The suggested fit for C, cannot 
predict negative values of C, and thus the model can only predict counter-gradient 
diffusion when T is not equal to zero. Indeed, the counter-gradient diffusion region 
of the experiments occurs near the peak of the T ( x 2 )  profile where, presumably, !Fl 
is largest and T 2  is about zero. 

- 

5. Conclusions 
Direct numerical simulations of homogeneous turbulent shear flow with mean 

passive-scalar gradients along each of the coordinate axes have been generated to 
develop a model for the passive-scalar flux vector. Examination of the terms in the 
Reynolds-averaged scalar flux balance has shown that the sum of the pressure-scalar 
gradient and velocity gradient-scalar gradient terms forms a vector approximately 
aligned with the scalar flux vector itself. Because the time change of the scalar flux 
is also directed approximately in the direction of the scalar flux for developed shear 
fields is it possible to derive an algebraic expression for the turbulent scalar flux. The 
resulting expression is a gradient transport model with a second-rank turbulent 
diffusivity tensor relating the scalar flux to the mean scalar gradient. The one 
dimensionless coefficient in the model is fitted as a function of the turbulence 
Reynolds number and the PBclet number from the simulation results. Using this 
fitting function the model predicts the scalar flux to within about 20% of the 
simulated values. 

The model developed here has difficulty predicting the turbulent scalar flux when 
the flux is strongly affected by the initial conditions. Experimental work in decaying 
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isotropic turbulence with an imposed mean scalar gradient (Sirivat & Warhaft 1983) 
indicates that different turbulent diffusivities are observed for the same hydro- 
dynamic field depending on the initial conditions of the passive scalar. The 
algebraic scalar flux model developed here (based solely on the hydrodynamic field, 
the mean scalar gradient and the Prandtl number) cannot predict this behaviour and 
underpredicts the average level of the scalar flux. It appears that the production of 
turbulence by mean shear tends to weaken the effect of the passive-scalar initial 
conditions and permit the use of an algebraic flux model. Clearly the model would 
also fail during transients when the flux direction was changing rapidly in time. I n  
such cases and in cases where the turbulent scalar flux is changing from an initially 
zero value, the assumption made in (3.6) is clearly not valid. 

The model was tested against direct numerical simulation results of fully 
developed turbulent channel flow. Two passive-scalar fields were studied ; one with 
the scalar transferred in a t  one wall and out the other and one with a uniform internal 
scalar source and the scalar transferred out of both walls. The model predictions for 
both cases are in good qualitative agreement with the numerical results, and the flux 
component required for closure of the mean scalar equation is predicted accurately. 
The basic assumption of the model, that  all terms requiring modelling in the scalar 
flux balance sum to a vector aligned with the scalar flux itself, was found to hold in 
this inhomogeneous flow despite the presence of numerous additional terms in the 
flux balance. 

The simple algebraic gradient transport model given by (3.10) and (3.20) is able to 
predict the turbulent scalar flux in developed shear flows even with the presence of 
inhomogeneities. By permitting a spatial dependence of the turbulent diffusivity in 
inhomogeneous flows and recognizing that the turbulent diffusivity is a non-diagonal 
second-rank tensor, earlier studies indicating the failure of gradient transport models 
are inconclusive. 

We are indebted to Dr John Kim and Professor Parviz Moin for providing the fully 
developed channel flow data and for their comments during the course of this 
work. 
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